Structure Stability Enhancement of Gold Micro-Cantilever with Top and Bottom Constrains at the Fixed-End for Applications as **Movable Structures in MEMS**

¹Institute of Innovative Research Tokyo Institute of Technology, Yokohama 226-8503, Japan ²CREST, Japan Science and Technology Agency, Yokohama 226-8503, Japan ³The University of Tokyo, Tokyo 153-8904, Japan

Introduction Gold Materials **Ti/Au-Layered Structure** Constrained Fixed End High electrical conductivity, chemical stability, corrosion resistance. Proof mass ⇒ High DENSITY Stopper 19.3 × 10³ [ka/m³] ∱ Gold **MEMS** Device Spring Titanium Sub-1G MEMS accelerometer composed of gold materials [1] Proof ma (Movable Si wafe SiO₂ Gold 0.5 The height difference/µm Spring Fixed end of the micro-component is SiO -0.5 sandwiched between structures, and the effect Au Thickness Si substrate on structure stability ??? μm ed electrode -1 10 um 12 µm Structure stability of gold-based components? Objective -1.5 Strength Young's modulus 20 40 60 80 130-188 GPa Cantileve length/µm Evaluate effect of the constraint condition at the Si 1-3 GPa (fracture) fixed end on structure stability of the Ti/Au-layered Au 55~200 MPa (yield) 70 GPa The structure stability is improved by the micro-cantilever. 111.5 GPa Ti/Au-layered design [2] Ti 480 MPa (yield)

SiO.

Experimental

Results and Discussion

Top &

bottom

constraint

100

200

-1.06

-0.51

0.315

0.573

FEM Simulation

	Length, <i>l</i> [µm]	Tip deflection , Δh_l [µm]	Average deformation, Δh _{ave,/} [μm]
Bottom constraint	50	-0.153	0.063
	100	-0.378	0.163
	200	-0.867	0.390
Top & bottom constraint	50	0.034	0.034
	100	0.015	0.044
	200	-0.095	0.032

Structure Stability Evaluation

Average deformatio

- 3D optical microscope (OM)
- FEM simulation (COMSOL Multiphysics software)
- The structure stability was quantified by the following equations

Height difference: $\Delta h_x = h_x - h_0$

n:
$$\Delta h_{\text{ave},l} = \frac{\sum_{x=1}^{l/d} (\Delta h_x \times d)}{l}$$

where I is total length of the micro-cantilever. d is step size of the measurement

Conclusions

- Results obtained from the OM observation and the FEM simulation showed the same trend.
- The Ti/Au micro-cantilevers having top and bottom constrains at the fixed end showed enhanced structure stability.
- Suppressing deformation at the fixed end is critical in improving the overall structure stability

Acknowledgement

This work has been supported by CREST Project (#14531864) by the Japan Science and Technology Agency (JST).

