Reliability Characteristics of Ti/Au Micro-Cantilever by Long-Term Vibration Test

Koichiro Tachibana¹, Chun-Yi Chen¹, Tso-Fu Mark Chang¹, Kyotaro Nitta¹, Daisuke Yamane¹, Toshifumi Konishi², Katsuyuki Machida¹, Hiroyuki Ito¹, Kazuya Masu¹, Masato Sone¹

¹Institute of Innovative Research Tokyo Institute of Technology, Yokohama 226-8503, Japan ²NTT Advanced Technology Corporation, Kanagawa, 243-0124, Japan

DL: $l \uparrow \rightarrow \Delta h_{tip} \downarrow$ 10⁵ slightly < 10⁷

 $\Delta \boldsymbol{h}_{ave}$

DL3+12>DL10+15

/ SL>>DL

<mark>∕</mark> 10⁵ ≈ 10⁷

Þ

ave

Įm

0

1000

7

5

3

1

-1

_3

200

400

Acknowledgement

600

Length/µm

This work was supported by JST CREST Grant Number JPMJCR1433.

800

Deflection,

Ē

4

2

æ

/µm

1000

DL10+1

400

600

Length/µm

800

Ah

Deflection,

<u>e</u>

5

3

1

-3

2.00

Conclusions The DL Ti/Au structure demonstrated positive effect on long-term structure stability of the micro-cantilever.

deformation

the substrate

parallel to

No fracture

surface

200 µm

The tip deflection changed only ~ 1 µm for 1000 µm long DL10+15 after 107 cycles of the vibration.