Effect of Annealing on Mechanical Properties of Nickel Film Electrodeposited Using Supercritical CO₂ Emulsion Evaluated by Micro-Compression Test

Takashi Nagoshi, Tso-Fu Mark Chang, Tatsuo Sato, Masato Sone

National Institute of Advanced Industrial Science, Japan Precision and Intelligence Laboratory, Tokyo Institute of Technology, Japan

Electroplating With Sc-CO₂ Emulsion (ESCE)

✓ Increased desorption of H₂ bubble from cathode

Void and defect free

✓ Periodic on/off at the surface of the cathode

Grain refinement

Supercritical fluid Gas and liquid Critical point

Use supercritical CO₂ for electroplating

Improved strength

Possible application for MEMS components.

Electroplating With Sc-CO₂

Materials

Substrate

- ➤Cathode: Cu substrates
- >Anode: Ni substrates
- Additive Free Watts Bath
- > NiSO₄•6H₂O (300 g/l)
- > NiCl₂•6H₂O (50 g/l)
- $> H_3 BO_3 (50 g/l)$

Surfactant

polyoxyethylene lauryl ether $(C_{12}H_{25}(OCH_2CH_2)_{15}OH)$

Plating conditions

Temperature	323 K
CO ₂ vol%	20 vol%
Current density	2 A/dm ²
Drossuro	15M/Da

Annealing of plated nickel

In vacuum for 2 hours at 150, 200, 300, 400°C

Structural characterization

Transmission electron backscattered diffraction (t-EBSD)

200°C annealed

> SEM-STEM

Mechanical characterization Micro-compression test

Fabrication of Compression Pillar by FIB

T JIVII a

RESULTS & DISCUSSION

150°C annealed

Effect of Annealing

Grain growth and Ni₃C precipitation observed at 300°C annealing

Carbon impurities in as-deposited Ni Grain size

 \geq 200°C pillar indicate brittle fracture and others deformed by broad shear banding

Carbon impurities from CO₂ produce fine nickel carbide on grain boundary

Grain growth at 300°C results in the 300 nm grains with high fractions of twin boundaries

 \succ Yield strength increased by low temperature annealing. \succ Carbon may rearranged on grain boundary which improve boundary strength and form intermetallic on grain boundary.

(HUN (HUS (DNS

Low temperature annealing of nanocrystalline nickel make material brittle and increase yield strength. Carbon impurity found in nickel film may concentrate on grain boundary by low temperature annealing and produce carbide at grain boundaries which suppress grain growth.