Enhancement of Mechanical Properties in Au Films Electroplated with Supercritical Carbon Dioxide for Application in MEMS

Haochun Tang^(1,2), Chun-Yi Chen^(1,2), Tso-Fu Mark Chang^(1,2), Daisuke Yamane^(1,2),

Katsuyuki Machida^(1,2,3), Kazuya Masu^(1,2), and Masato Sone^(1,2)

- 1 Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
- 2 CREST, Japan Science and Technology Agency, Yokohama, 226-8503, Japan

(MPa)

Solid

gas+liquid

3 NTT Advanced Technology Corporation, Kanagawa, 243-0124, Japan

Background

Proof mass

Stopper

Spring

MEMS devices with gold materials

- Higher sensitivity than Si based conventional devices
- Density of gold: 19.3 g/cm³
- Low mechanical strength among metallic materials **Concerns in the practical** application of MEMS devices

Experimental

■ Electroplating with scCO₂

Any strategy for strengthening?

Liquid

Sublimation

0 200 220 240 260 280 300 320 340 360

Temperature (K)

Supercritical

region

Critical point

Gas

Application of scCO₂ in electroplating

D. Yamane et al., APL 104 (2014) 074102; D. Yamane et al., ECS Trans. 72 (2016) 7

- Electroplating with scCO₂ contained electrolyte (EP-SCE)
- Smoother surface morphology
- Grain refinement effects

Fixed electrode

Hall-Petch relationship $\sigma_y = \sigma_0 + k_y / \sqrt{d}$

Enhancement of mechanical strength Objective

Evaluate mechanical property of Au films fabricated by EP-SCE

Results & Discussion

critical point supercritical

FIB milling & micro-compression tests

Surface morphology & roughness Deformation of Au micro-pillars

Strain-stress curve of Au pillars

- Similar surface morphology ($R_a \sim 13$ nm) • Brightener \Rightarrow leveling effect
- **Crystalline structure of Au films**

 $\Rightarrow \sigma_{v,CONV} = 380 \text{ MPa}; \sigma_{v,SCE} = 520 \text{ MPa}$

✓ Based on the Hall-Petch relationship, finer grain can lead to stronger strength.

Grain distribution by EBSD

- Typical polycrystalline deformation
- Clear grain boundary in CONV-EP pillar
- Inconspicuous grains in EP-SCE pillar
- CONV-EP: GS = $0.8-0.9 \mu m$; EP-SCE: undetectable

Conclusions

Micro-mechanical strength of gold films fabricated by EP-SCE method were evaluated. ✓ High mechanical strength was obtained in EP-SCE film. σ_v : 520 MPa \checkmark Ultra-fine grain can lead to a higher strength. \Rightarrow Grain boundary strengthening

Acknowledgement

This work is supported by CREST Project operated by the JST.