Evaluation of Mechanical Properties of Electroplated Nickel Using Micro-Compression Test 家东工業大家 Takashi Nagoshi, X Tso-Fu Mark Chang, Tatsuo Sato, Masato Sone 130th Anniversary in 2011 Precision and Intelligence Laboratory, Tokyo Institute of Technology, Japan

✓Increased desorption of H₂ bubble from cathode Void and defect free ✓ Periodic on/off at the surface of the cathode Grain refinement

Gas and liquid Critical point Supercritical fluid

Enhanced mechanical properties

EXPERIMENTAL PROBEDURE

Fabrication of Compression Pillar By FIB

Materials
Substrate
Cathode : Cu substrates
Anode: Ni substrates
Additive Free Watts Bath
➢ NiSO₄●6H₂O (300 g/l)
\geq NiCl ₂ •6H ₂ O (50 g/l)
> H ₃ BO ₃ (50 g/l)
Surfactant
polyoxyethylene lauryl ether
(C ₁₂ H ₂₅ (OCH ₂ CH ₂) ₁₅ OH)
Pretreatment
Degreecing 10 wt^{0} Acc

- Degreasing, 10 wt% Ace clean solution for 1min
- Remove oxide layer, 10 wt% HCl solution for 10 sec

Electroplating With Sc-CO₂

Plating Condition

	ESCE	High Pressure Electroplating (HPE)	
Temperature	323 K		
CO ₂ vol%	20 vol%		
Current Density	2 A/dm ²		
Pressure	15 MPa	6 MPa	
Agitation	On	Off	

To prove how much would the emulsified Sc-CO₂ affect the structure and properties

RESULTS & DISCUSSION

Scanning Ion Microscope (SIM) Observation

ESCE Single Cristal (SC) HPE Image contrast represents difference in crystal orientation

ESCE	Grains are finer than the SIM resolution
HPE	Columnar grains with diameter of 2 μm
SC	Single crystal

Equiaxed nanocrystalline nickel were obtained by

periodic on/off characteristics in ESCE

TEM Observations of ESCE Nickel

SEM Observation After Deformation

ESCE Nickel

Yield strength of ESCE Nickel is 10 times higher than SC &

(MPa) 3000 stress True **HPE** Nickel 1000 SC Nickel Plastic true strain (%)

5 times higher than HPE

Compressive strength exceeds 3500 MPa in micro-compression Cracks or failure are absent up to 9 % of permanent strain

ESCE is a good candidate to improve mechanical properties of plated film

EUNELIS UNS

4000

- Due to the periodic on/off characteristics in ESCE by bouncing micelles on the cathode, grain size decreased to 8 nm.
- As grain size decreased from 2 µm to 8 nm, yield stress increased by a factor of around five. And maximum stress for ESCE nickel reaches 3.5 GPa without any crack or failure up to 9% of permanent strain.