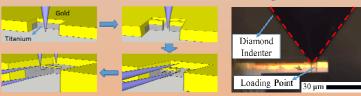
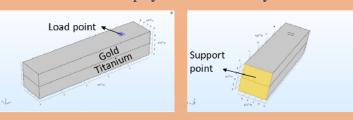


Mechanical Strength Enhancement of Ti/Au Layered Structure Evaluated by Micro-Bending Test

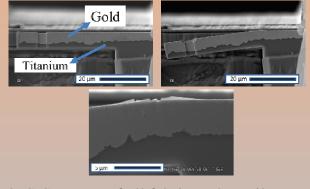

Ken Hashigata¹, Haochun Tang¹, Tso-Fu Mark Chang¹, Chun-Yi Chen¹, Daisuke Yamane¹, Toshifumi Konishi², Katsuyuki Machida¹, Kazuya Masu¹, Masato Sone¹

¹Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan ²NTT Advanced Technology Corporation, Kanagawa, 243-0124, Japan

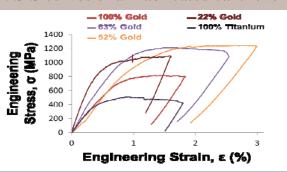


Experimental Method

1. FIB Fabrication and Micro-Bending Test

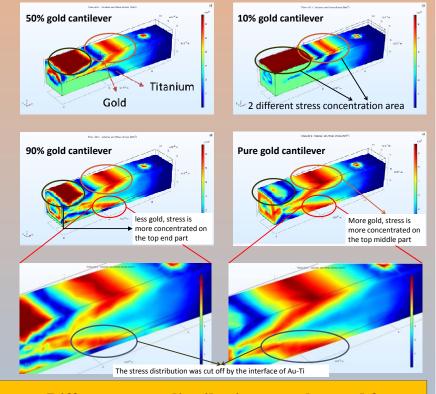


2. COMSOL Multiphysics FEM analysis



Results and Discussion

1. Cantilever specimen before and after bending



2. S-S curves of all fabricated cantilevers

- Incoherency between the two metal layer
- Gold has smaller grain size than titanium

3. Von mises stress FEM analysis results

 Different stress distribution was observed for different thickness ratio

Conclusions

- Enhancements in the yield strength were results of the interface layer and better stress distribution.
- Specimen with higher gold ratio showed higher yield strength because strength of the electrodeposited gold is higher than the cold-rolled titanium.

Acknowledgement

This work was supported by JST CREST Grant Number JPMJCR1443, Japan and the Grant-in-Aid for Scientific Research (S) (JSPS KAKENHI Grant number 26220907)