Cu-Alloying Effect on Structure Stability of Au Micro-Cantilever Evaluated by Long-Term Vibration Test

Kyotaro Nitta(a), Koichiro Tachibana(a), Haochun Tang(a), Chun-Yi Chen(a), Tso-Fu Mark Chang(a), Daisuke Yamane(b), Toshihumi Konishi(b), Katsuyuki Machida(b), Hiroyuki Ito(a), Kazuya Masu(a), Masato Sone(a)

(a) Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
(b) NTT Advanced Technology Corporation, Atsugi, Kanagawa, 243-0124, Japan

Email: sone.m.aa@m.titech.ac.jp

Introduction

- Au materials:
 - High density
 - High electrical conductivity
 - High corrosion resistance

- Applications in MEMS Devices:
 - Au-based MEMS acceleration sensor can detect Sub-1µG
 - Concerns about reliability and lifetime due to gold’s weak mechanical property

Solutions by Au-Cu alloy plating

- Solid solution strengthening
- Grain boundary strengthening

- The yield strength was improved from 0.22 GPa to 1.1 GPa [2]

Objective

- Evaluate long-term structure stability of the electrodeposited Au-Cu alloy

Experimental

- Au-Cu Alloy Micro-Cantilever
 - Length (l): 500, 1000 µm
 - Width (w): 10 ~ 20 µm
 - Ti thickness: 0.1 µm

- Ti thickness: 0.1 µm

- Controller
- Vibration exciter

- Acceleration: 1.0 G
- Frequency: 10.0 Hz
- Cycle: up to 10^7

Results & Discussion

OM Image and height profile after vibration fatigue test

- No cracks and defects
- Remains straight
- Hardly changed

Structure stability after vibration fatigue test

- Alloying with Cu
- Small Δhtip

- Wide width
- Small Δhtip

Conclusions

- There were no cracks and defects in the cantilever beam after 10^3 ~ 10^7 cycles of vibration
- Structural stability was enhanced by alloying with Cu against vibration fatigue

Acknowledgement

This work was supported by JST CREST Grant Number JPMJCR1433, Japan